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Abstract 
This paper describes a new concept of defining geometric solids as a three-parameter set 

of points in three-dimensional space. An analytical description of such a three-parameter set 
of points is realized in the point calculus. The analysis of existing approaches to the visualiza-
tion of a three-parameter set of points, which is described by a system of parametric equa-
tions, showed the absence of software solutions that are capable of visualizing three-
dimensional solids in accordance with the proposed concept. In this connection the problem 
of visualization of solid-state models of geometrical objects parametrized in the point calculus 
is set. One solution to this problem is to adapt the existing way of visualization of three-
dimensional objects in various simulation systems. Thus, on the basis of the point equation of 
a geometric solid, several surfaces are formed, the totality of which defines a closed envelope 
around the solid. Each of these surfaces corresponds to the limit state of one of the current 
parameters. Alternately fixing these parameters determines the point and parametric equa-
tions for their construction. Examples of visualization of face and curvilinear solids are given, 
which have shown the possibility of using computer algebra systems to visualize models of 
geometric solids in the form of a three-parameter set of points. 

Keywords: solid modeling, geometric solid, point calculus, visualization, three-
parameter point set, space dimensionality. 

 

1. Introduction 
Modern computer graphics industry, from automated, solid-state or information model-

ing systems (for example, BIM) to computer games, can no longer be imagined without solid-
state modeling, which is often called three-dimensional in the domestic literature. In foreign 
sources, the most common term is “solid geometry” [1, 2]. Examples of the effective use of 
solid models can be works in mechanical engineering [3, 4], construction [5, 6], medicine [7, 
9], education [2, 10], etc. 

At the same time, the existing solid-state models are not inherently such, since they rep-
resent a hollow closed shell bounded on all sides by surfaces of different curvature. In accord-
ance with [11], a solid in geometric modeling is a connected set of points located on the inner 
side of one outer and several inner shells located inside the outer shell, together with the 
points of these shells. In our opinion, this definition is too complicated for perception and re-
quires clarification of additional terms. After analyzing the vector equations of solids given in 
[11], presented as a two-parameter set of points, we can conclude that these are equations of 
only the surfaces of the shell of a geometric solid. A similar concept is presented in other 
works related to the representation of geometric solids in various modeling and visualization 
systems [12-15]. 
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In contrast, in [16, 17] a new concept of defining geometric solids is proposed, for which 
the existing approach is just a special case, and point equations of elementary geometric sol-
ids in point calculus (another name for BN-calculus) are obtained [18-20]. 

There is an opinion that solid models cannot be described by an equation. If we consider 
only the set of equations in an explicit form, then this is indeed the case and is connected with 
the fact that one of the axes of the coordinate system is reserved as a function. Accordingly, 
the number of variables of an explicit equation is always one less than the dimension of the 
space in which the geometric object is defined by this equation. At the same time, the point 
calculus, which uses the apparatus of projection onto the axes of the global coordinate sys-
tem, makes it possible to use all coordinate axes, the system of which determines the space of 
the required dimension. This makes it possible to obtain the equations of geometric solids us-
ing simple arithmetic operations on the coordinates of points and continuous functions of pa-
rameters. 

2. The concept of solid modeling of geometric objects in 
point calculus 

Modeling of any geometric solids is inherently related to the dimension of the space in 
which the desired geometric solid is determined, and its topology. So, a line is a one-
parameter set that can be defined at least in a 2-dimensional space. But at the same time, the 
line, both straight and curved, is itself a one-dimensional space. If you select a segment or an 
arc on a line, then, in fact, we get a one-dimensional analogue of a geometric solid, which is 
determined in point terms by the movement of the current point using the current parameter. 
The current point with its movement along a given trajectory fills the space, forming a con-
tinuous geometric object. Thus, a 1-dimensional geometric solid is a 1-dimensional space 
filled with points. 

If we select an area on the surface that is bounded by lines and filled inside with points, 
then we get a 2-dimensional geometric solid that can be defined in 3-dimensional space, but 
is itself 2-dimensional. Moreover, such a 2-dimensional geometric solid, as well as the space 
in which it is located, is a two-parameter set of points and is determined by two current pa-
rameters. Accordingly, the geometric solid familiar to us in 3-dimensional space, as well as 
the space itself, is a three-parameter set of points and is determined by three current parame-
ters. Thus, the three-parameter set of points in 3-dimensional space will be a geometric solid, 
and in 4-dimensional space it will be a three-parameter hypersurface. This approach has a 
generalization to a multidimensional space. For example, it can be used to describe the space-
time continuum in 4-dimensional space. 

Based on the above-mentioned considerations about the dimension of space, in [16, 17] 
another definition of a geometric solid was proposed. So, we will call a geometric solid a geo-
metric set of points, in which the number of current parameters that determine it is equal to 
the dimension of space. The geometric solids defined in accordance with this concept can also 
exist in spaces of higher dimensions. This approach was effectively used for geometric model-
ing of multifactorial processes and phenomena by the method of multidimensional interpola-
tion [21]. 

The definition of geometric solids in point calculus, by analogy with the geometric model-
ing of curves and surfaces, begins with the development of a geometric scheme. In this case, 
fixed points of the simplex (as a rule, they determine the overall dimensions of a geometric 
object), current points (they will fill the space with their movement, forming a geometric ob-
ject) and intermediate points (needed for the convenience of compiling geometric and com-
putational algorithms, but are subsequently excluded from the calculation) are distinguished. 
The process of interaction of these points is implemented using the moving simplex method 
[18], which is an analogue of the kinematic method of shaping geometric objects in point cal-
culus. The geometric scheme is developed in such a way that the desired geometric object has 
predetermined geometric properties. The analytical description, first of all, depends on the 
geometric scheme, which predetermines the sequence of points definition. The final point 
equation is subjected to a coordinate-wise calculation, which is an operation of transition 



from point equations to a system of parametric equations of the same type. Thus, a computa-
tional algorithm is formed for computer simulation of a geometric object.  

In our opinion, the proposed concept allows expanding the existing tools for modeling 
geometric solids. For example, its implementation makes it possible to find a new approach 
to solving the problem of synthesizing geometric solids from projection images [22–24]. 

I would like to note that within the framework of the proposed concept, point calculus is 
not the only possible mathematical tool for modeling geometric solids. Given that all point 
equations for their direct visualization are reduced to a system of parametric equations, they 
can be fully used to determine geometric solids, but this increases the number of calculations. 
In addition, images obtained in [25] in Figs. 12 with examples of constructing the form of 
thermal expansion in the form of discretely represented layers indicate the presence of the 
potential of the functional-voxel modeling apparatus for determining geometric solids in ac-
cordance with the concept proposed in [16, 17]. 

3. The problem of visualizing solid models 
The problem of visualizing solid models comes from the concept of their definition. In the 

concept implemented at the moment in modeling systems, it is sufficient to model only the 
surface of the solid shell, without filling it with points. The technology of modeling and visual 
representation of surfaces is well studied and therefore does not pose any big problems in 
visualizing a geometric solid in the form of a closed set of surfaces (two-parameter sets of 
points). But if we proceed from the proposed concept of defining geometric solids in the form 
of a three-parameter set of points belonging to 3-dimensional space, then the question arises 
- how to visualize it? After all, the very concept of defining geometric solids is innovative and 
has not yet been implemented in any of the visualization systems for three-dimensional geo-
metric models [26-28]. 

If you use the existing interpreters of computer mathematics systems, some of which 
have powerful tools for visualizing research results, then a similar problem arises. All of them 
can only visualize surfaces in 3D space, and their syntax does not allow visualization of a 
three-parameter set of points. Some of them contain their own set of simple geometric solids. 
For example, in the Plottools package of the Maple computer algebra system [29], there is a 
small library that allows you to visualize elementary geometric solids that can be built from 
the coordinates of vectors. But without the equations of these solids, it is practically impossi-
ble to work constructively with them. 

Since the new concept of defining geometric solids involves filling a three-dimensional 
closed space with points, it is logical to use a discrete set of high-density points to visualize 
models of geometric solids. Computational experiments were carried out in the Maple soft-
ware package. 

As an example, consider a solid model of a triangular pyramid (Fig. 1), which, in accord-
ance with [16], is determined by the following point equation: 
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(1) 

where 1u u  ; 1v v  ; 1w w  ; 
,  ,  u v w are the current parameters that vary from 0 to 1; 

 ,  ,  ,A B C D  are any four points that do not lie in the same plane. 

As a result, it was found that even with a small number of 10,000 points, there are diffi-
culties in using such models due to the large computational load. Fig. 1 shows an example of 
visualization of a solid model of a pyramid in the form of a discrete set of points in the Maple 
software package. To visualize the triangular pyramid in the plan, 20 by 20 points were se-



lected along the sides of the triangle, along the height of the pyramid – 30 points. The result 
is 12,000 points. At the same time, it is very difficult to work with the model on a 4-core com-
puter with a frequency of 3.5 GHz, 16 GB of DDR4 RAM and a discrete GTX 1050 video card 
with 4 GB of video memory. Even the rotation of such a pyramid causes certain difficulties 
and the program freezes for a few seconds. And the necessary density of points in order to 
consider the solid as a single continuous object, as can be seen from Fig. 1 has not been 
reached. 

 

 
Fig. 1. Visualization of a solid model of a pyramid by a discrete set of points 

 
Based on the experience of visualizing geometric solids in existing modeling systems, we 

will use the following method. We single out special cases from the point equation of a geo-
metric solid, fixing in turn the necessary values of the parameters of the point equation. As a 
result, we obtain several partial surfaces, which together form a shell closed around the solid, 
by analogy with existing solid modeling systems. The visualization of such surfaces is well 
mastered and does not carry a significant computational load. 

4. Visualization of faceted solids based on point equations 
Let us consider several examples of visualization of faceted geometric solids, for which 

point equations have been obtained. In particular, in order to visualize the geometric model 
of a triangular pyramid, it is enough to select 4 planes that limit its surface. These planes are 
determined by the limiting values of the current parameters of the point equation (1). So, with 

the value of the parameter 0w  , we get the plane of the base of the pyramid, and with 1w
- its top. In relation to visualization, the top of the pyramid, being a single point, does not car-
ry much value, so it can be excluded from the visualization process. Moreover, it is duplicated 
by the side planes of the pyramids. 

The side planes of the pyramid are determined by alternately fixing the parameters    

0u  , 1u  and 1v  . For a fixed value of the parameter 0v  , we obtain a straight line of 
intersection of two side planes of the pyramid, which is a feature of the proposed parametri-
zation in accordance with the geometric scheme given in [16]. This line can also be excluded 
from the visualization process due to dubbing. As a result, we get a visualization of a solid 
model of a triangular pyramid (Fig. 2). 

 



 
Fig. 2. Visualization of a solid model of a pyramid in the form of a set of 4 planes 

 
Based on considerations of automating the visualization process, such exceptions cannot 

be made. It is enough to fix alternately all possible limit values of the current parameters and 
display the resulting planes on the screen. 

Using the dot equation (1), one can easily obtain a truncated pyramid. To do this, it is 
enough to accept the parameter w  value from 0 to 1. Thus, instead of a point, a fifth plane 

will be added. For example, when 0,5w , we get the model presented in Fig. 3. 

 

 
Fig. 3. Visualization of a solid model of a truncated pyramid in the form of a set of 5 planes 

 
In this case, the sectional plane of the pyramid was parallel to the base. Consider an ex-

ample of a section of the solid of a pyramid by a plane in general position, which we define 

using traces of the section plane on the sides of the pyramid ABCD : 
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where ,  ,  p q r  are fixed parameters defining points ,  ,  P Q R  (Fig. 4). Within the triangular 

pyramid, the values of these parameters should be taken on the interval from 0 to 1. 
 



 
Fig. 4. Geometric scheme for modeling the solid of a pyramid truncated by a plane of  

general position 
 
In accordance with [16], the equation for the base of a pyramid filled with dots has the 

following form: 

    .N A C uv B C v C      

Similarly, the secant plane of the pyramid is determined, filled with points: 

      .A D p B D qK Cuv D Dv rvu      

The space between these two planes will be filled with a movable segment NK : 
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Having the final point equation of a geometric solid, to determine it in the global Carte-
sian coordinate system, it is necessary to perform a coordinate calculation by analogy with the 
equation (1): 
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As a result, we obtain a solid model of a pyramid truncated by a plane of general position 

PQR  (Fig. 5). 

 

 
Fig. 5. Visualization of a solid model of a pyramid by a truncated plane in general position 

 
In this case, to visualize the solid model, the limiting values of the current parameters are 

also used, which determine the five planes that bound the surface of the pyramid solid, which 

are determined from the general equation of the solid with the parameter values: 0u  ,   

1u  , 1v  , 0w   и 1w . 



As a result of the research, an interesting feature was discovered. Let us define in the 

simplex ABCD  the point equation of the truncated part of the pyramid, which is also a py-

ramidal solid with a secant plane PQR  as the base: 
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From the point of view of solid modeling, the truncated pyramid is the result of subtract-

ing the solid of the truncated part PQRD  from the base one ABCD . At the same time, if we 

analyze the receipt of the equation, we get that the point equation of the truncated pyramid 

ABCPQR  is the sum of the truncated pyramid PQRD  and the base one ABCD :

1 2M M M  . Computational experiments on the visualization of geometric solids confirm 

this. Of course, the conditions for the interaction of geometric solids in point calculus still re-
quire additional research. But the result obtained already allows us to take a fresh look at the 
implementation of Boolean operations on solids, some of which can be replaced by simple 
arithmetic operations on points and their coordinates. 

5. Visualization of curved solids based on point equations 
A similar visualization method can be applied to curvilinear solids. As an example, con-

sider the visualization of channel solids in the form of a surface with a wall thickness  . 
To parameterize the channel surface in point terms, a geometric algorithm is proposed 

(Fig. 6), which includes: determining the tangent NP  to the guide curve ANB  using parallel 

translation [18]; definition of the normal 1NN  using the metric operator of three points (it is 

an analogue of the scalar product of vectors in point calculus) and a point R  fixing the length 

of the segment  NR ; definition of a binormal 2NN  by determining the exit point from the 

plane (it is an analogue of the vector product of vectors in point calculus) and a point Q  that 

fixes the length of the segment NQ . 

 

 
Fig. 6. Geometric scheme for modeling the channel surface 

 
To pass from a channel surface to a channel solid, it is necessary to supplement the geo-

metric model of the surface with a wall of constant or variable thickness. It is convenient to 

set such a wall using the conditional center N  of the section of the channel surface (Fig. 7). 
 



 
Fig. 7. Geometric scheme for determining the wall of the channel surface 

 
Regardless of the shape of the generatrix of the region, it is determined by a moving point 

K , which fills the space with its movement, forming a closed curve. Any combination of con-
tinuous and compound lines can be used as closed curves. In this case, in fact, there is a rota-

tion of the point K  around the conditional center N . Select at the NK  straight line segment 

1 2K K  of length  . The movement of this segment around the point N  will ensure that the 

space is filled with points, forming a wall of the channel solid with a thickness of  . We de-

termine the point 1K  from the condition of belonging to a straight line NK : 
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We determine the point 2K  from the condition that the segment 1 2K K  is divided by the 

point  K  in half: 
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Then the current point of the channel solid M  will be determined by the following equa-
tion: 
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In a similar way, the wall thickness can be laid in or out of the generatrix of the channel 
surface. 

Next, we consider several examples of modeling channel solids in the form of a set of sur-
faces (Fig. 8a-8c), which are determined by successively fixing the following parameter val-

ues: 0u  , 1u  , 0w   и 1w . 
In these examples of visualization of channel solids, a spatial transcendental line with a 

dotted equation is used as a guide: 

     33 sin( ) .N A D u B D C Du Du       

But the given geometric algorithm for shaping channel solids allows the use of flat curves 
along with spatial ones. Also, in addition to transcendental curves, any continuous or com-
pound curves can be used. 



 

  
a) b) 

 
c) 

Fig. 8. Visualization of the channel solid: a) with an elliptical generator; b) with a generator in 
the form of a sine wave [30] with 7 waves; c) with a generator in the form of a closed contour 

of the first order of smoothness [31] 

6. Conclusion 
As can be seen from the examples given, the proposed method is quite suitable for visual-

ization in computer algebra systems of solid-state models in the form of a three-parameter set 
of points. At the same time, in our opinion, the problem of visualization of solid-state models 
in the form of a three-parameter set of points is urgent and requires additional research. Per-
haps it is time to solve this problem radically, abandoning the use of monitors in favor of gen-
erating full-fledged three-dimensional images in space by analogy with holographic ones [32-
34], since the proposed concept of solid modeling implies this. 

It may seem that the implementation of the visual representation of the proposed concept 
of solid modeling is no different from the existing one, since it also uses a set of surfaces to 
visualize geometric solids. But the fundamental difference from existing systems is that in the 
process of modeling, instead of a set of several equations of surfaces, there will be only one-
point equation in the computer's RAM. It will instantly give the special cases necessary for 
displaying on the computer screen in the form of separate surfaces bounding a geometric sol-
id. At the same time, their point equations will be used to visualize the interaction of several 
geometric solids in the calculation process. In addition, the use of coordinate-based calcula-
tion of point calculus opens up the possibility of automatic parallelization of calculations of 
all coordinates of points to determine any continuous and discrete geometric objects. There-
fore, the development of the proposed concept of solid-state modeling using point equations 
and computational algorithms based on them can be an effective tool for building computer 
graphics systems and solid-state modeling of a new generation. At the same time, the authors 
of the article will be pleased with new ideas on visualization of geometric solids based on 



point equations and joint cooperation in the development and implementation of highly effi-
cient systems of geometric and computer modeling. 

It should be noted that the proposed approach to the construction of geometric solids in 
the form of point equations can be an effective discretization tool for mathematical and com-
puter modeling in finite element analysis systems. But when using the method of numerical 
solution of differential equations proposed in [35, 36] using geometric interpolants, this is 
not necessary, since a multidimensional geometric interpolant is a special superelement [37, 
38] that carries information not only about geometric, but also about physical properties. 
Thus, solid-state modeling of geometric objects in point-to-point calculation together with 
numerical solution of differential equations using geometric interpolants is the theoretical 
basis for the development of a closed cycle of digital products, which, by analogy with the iso-
geometric method [39, 40] eliminates the need for coordination of geometric information in 
the process of interaction between CAD and FEA systems. 
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